Cold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency.
نویسندگان
چکیده
Despite their lack of brown adipose tissue, some bird species develop regulatory non-shivering thermogenesis (NST) of skeletal muscle origin in response to cold acclimation. Mechanisms involved in avian NST are still unclear but may involve reduced energetic coupling in skeletal muscle mitochondria through the expression of an avian homologue of mammalian uncoupling proteins. The aim of this work was to investigate whether the expression of avian uncoupling protein (avUCP) would correlate with the capacity for cold-induced muscle NST. Various levels of cold acclimation were obtained by rearing 1-week-old ducklings (Cairina moschata) for 4 weeks at three different ambient temperatures (25 degrees C, 11 degrees C or 4 degrees C). Muscle NST was measured by simultaneous recordings of metabolic rate and electromyographic activity (gastrocnemius muscle) at ambient temperatures (T(a)) ranging from 27 degrees C to -5 degrees C. The expression of avUCP gene and mitochondrial bioenergetics were also determined in gastrocnemius muscle. Results showed that muscle NST capacity depends on the T(a) at which ducklings were acclimated, i.e. the lower the rearing temperature, the higher the capacity for NST. This increased metabolic heat production occurred in parallel with an upregulation of avUCP, which was not associated with a change in mitochondrial membrane conductance. The intensity of mitochondrial oxidative phosphorylation also increased in proportion with the harshness of cold, while the efficiency of ATP generation was equally effective in all three acclimation temperatures. In the absence of mitochondrial uncoupling, these data indicate a clear link between avUCP expression and the capacity of ducklings to adjust their muscular aerobic activity to cold exposure.
منابع مشابه
Life without UCP I : mitochondrial , cellular and organismal characteristics of the UCP I - ablated mice
Mice devoid of the original uncoupling protein UCPl have provided opportunities to delineate UCPl function in a series of biochemical and physiological contexts. The isolated brown-fat mitochondria from such mice are fully coupled (without the addition of GDP), but still exhibit a depressed capacity for ATP synthesis. However, they only show a 2-fold decrease in sensitivity to the de-energizing...
متن کاملThermoregulation: what role for UCPs in mammals and birds?
Mammals and birds are endotherms and respond to cold exposure by the means of regulatory thermogenesis, either shivering or non-shivering. In this latter case, waste of cell energy as heat can be achieved by uncoupling of mitochondrial respiration. Uncoupling proteins, which belong to the mitochondrial carrier family, are able to transport protons and thus may assume a thermogenic function. The...
متن کاملAdaptive thermogenesis in hummingbirds.
The occurrence of non-shivering thermogenesis in birds has long been a controversial issue. Although birds are endothermic vertebrates, sharing with mammals (placental mammals and marsupials) a common ancestor, they do not possess brown adipose tissue or a similar type of tissue, unlike their mammalian counterparts. Some bird species are, however, able to withstand very low ambient temperatures...
متن کاملBrown Fat in Birds? a Test for the Mammalian Bat-specific Mitochondrial Uncoupling Protein in Common Poorwills’
In mammals, brown adipose tissue (BAT) or brown fat is the major organ ofthermoregulatory heat production through non-shivering thermogenesis (NST; Nicholls and Locke 1984). It is commonly found in neonates, cold-adapted adults, and hibernators (Rothwell and Stock 1985). Heat is generated through a mitochondrial proton conductancepathway which uncouples substrate oxidation from ATP synthesis. T...
متن کاملChronic cold acclimation increases thermogenic capacity, non-shivering thermogenesis and muscle citrate synthase activity in both wild-type and brown adipose tissue deficient mice.
The purpose of this study was to determine whether chronic cold exposure would increase the aerobic capacity of skeletal muscle in UCP-dta mice, a transgenic line lacking brown adipose tissue (BAT). Wild type and UCP-dta mice were acclimated to either warm (23 °C), or cold (4 °C) conditions. Cold increased muscle oxidative capacity nearly equivalently in wild-type and UCP-dta mice, but did not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 14 شماره
صفحات -
تاریخ انتشار 2010